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Abstract

A sharp interface method is proposed for the dissolution of stoichiometric particles in multi-component alloys occur-
ring during the heat treatments of as-cast aluminium alloys prior to hot extrusion. In the mathematical model, a number of
non-linearly coupled diffusion equations are given to determine the position of the particle interface and the interfacial
concentrations. A level set method is used to determine the interface position at each time step. Once the front position
is known, a fixed-point iteration is used to find the interfacial concentrations. The model is applicable to both complete
and incomplete dissolution in two and three spatial dimensions, and handles topological changes in a natural fashion.
The numerical solution is compared with steady-state and self-similar exact solutions available for simple particle geom-
etries. Subsequently, the model is applied to an AlMgSi-alloy to investigate the influence of the particle morphology in the
dissolution kinetics.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the thermal processing of both ferrous and non-ferrous alloys, homogenization of the existing micro-
structure by annealing at such a high temperature that unwanted precipitates are fully dissolved, is required
to obtain a microstructure suited to undergo heavy plastic deformation as well as providing an optimal start-
ing condition for a subsequent precipitation hardening treatment. Such a homogenization treatment is for
example applied prior to hot-rolling of Al killed construction steels, HSLA steels, all engineering steels, as well
as in processing aluminum extrusion alloys. Although precipitate dissolution is not the only metallurgical pro-
cess taking place during homogenization, it is often the most critical of the processes occurring. The minimum
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temperature at which the annealing should take place can be determined from thermodynamic analysis of the
phases present. However, the minimum annealing time at this temperature is not a constant but depends on
particle size, particle geometry, particle concentration, overall composition, etc. To make the homogenization
treatment more efficient, it is highly desirable to have robust physical models for the kinetics of particle dis-
solution as a function of thermodynamics and thermokinetics data as well as particle morphology and micro-
structural dimensions. Using such models, the minimum annealing times and optimum heating strategies can
be calculated a priori, rather than be determined experimentally at great cost. Furthermore quantitative
insight into the relation between the microstructure of the alloy and its mechanical properties is necessary.
Dumont et al. [9,10] carry out an experimental study to link the volume fraction and size distribution of
the particles with the hardness in the aluminium alloys.

Due to the scientific and industrial relevance of being able to predict the kinetics of particle dissolution,
many models of various complexities have been presented and experimentally validated. The early models
of particle dissolution (and/or growth) based on long-distance diffusion [42,3,32] consisted of analytic solu-
tions in unbounded mediums under the assumption of local equilibrium at the interface. These models assume
that the processes at the interface between the adjacent phases take place instantaneously, and therefore pro-
vide an upper bound for the dissolution kinetics. Non-equilibrium models incorporating the interface reac-
tions are due to Nolfi et al. [23] and Aaron and Kotler [1], among others. More recently, modelling of
particle dissolution has been extended to the introduction of multi-component particles [27,31,38]. All the
analyses indicate that the addition of secondary alloying elements can influence the dissolution kinetics
strongly.

In the abovementioned papers, particle dissolution was viewed as a Stefan problem with a sharp interface
separating the constitutive phases. An alternative to this modellization is the phase-field approach, which is
derived from a minimization of a free energy functional employing a diffuse interface between the phases in
contact. Furthermore, the interface conditions are embedded in the formulation of the phase transformations
on the diffuse interface, and the sharp interface problem is recovered in the limit of vanishing interface thick-
ness [6]. This approach has been used by Wheeler et al. [41] to simulate phase transformations in binary alloys.
More recently, Grafe et al. [13] and Kovačević and Šarler [18] have applied the phase-field method to solid-
state phase transformations in multi-component alloys. Their results for one-dimensional problems show a
perfect agreement with the sharp interface models. However, phase-field models have some drawbacks. Phys-
ically justifiable parameter values in the energy functional are generality derived from fitting simulations to
experiments. Derivation of these parameters from the information available in thermodynamic databases is
generally not yet possible. Furthermore, a fine resolution along the diffuse interface is necessary to accurately
resolve the problem. Hence, adaptive mesh techniques [20,5] need to be implemented. Unfortunately, these
strategies impose severe bounds on the time-stepping and consequently simulations require large computa-
tional times.

The aim of this study is to develop a numerical method to simulate particle dissolution in multi-component
alloys in three spatial dimensions. As far as we know, the methods currently capable of dealing with higher-
dimensional problems have been developed for binary alloys [28,35] only. The methods for dissolution in
multi-component alloys either assume geometrical reductions in order to solve a one-dimensional problem
[33,18] or only consider rather simple geometries [13] in two-dimensions. Furthermore, we are interested in
studying the evolution of the interface concentrations under different thermal conditions and for different par-
ticle geometries. This motivates us to search for a suitable numerical method based on a sharp interface model.

Several numerical methods exist for solving Stefan problems with a sharp interface related to particle dis-
solution and phase transformations. A survey on classical methods for Stefan problems is given by Crank [8].
More advanced are the so-called front-tracking and front-capturing methods. The first use an explicit repre-
sentation of the interface given by a set of points laying on the front which should be updated each time step
and which may or may not be connected to the background mesh. Murray and Landis [21] introduced a mov-
ing grid method for one-dimensional solidification problems. In their approach, the computational mesh is
connected to the interface and hence updated each time step. This approach was extended by Segal et al.
[28] to solve particle dissolution in two dimensions. Juric et al. [16] combine a fixed grid method with a moving
mesh on the interface to solve solidification problems. In their method, information is transferred from the
discrete interface to the fixed mesh with the immersed boundary method.
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On the other hand, in front-capturing methods the interface is identified with a specific property of a mark
function. A great advantage of such a representation is that topological changes are easily handled. Within
this class of methods, the most widely used are the enthalpy method and the level set method. Enthalpy meth-
ods have been successfully applied to solidification problems by Voller et al. [39,40] and Nedjar [22] and
recently to solid state phase transformations by Lam et al. [19]. The heat equation is replaced by a balance
of energy which relates the enthalpy with the heat of the system. The resulting discretized system is highly
non-linear and advanced techniques are required for its solution [11]. The interface location is identified in
a post-processing step as a corresponding isotherm of the heat distribution. As a consequence, ’stair-casing’
effects seem to be inherent to enthalpy methods, which may result into inaccurate approximations to the inter-
face, especially near steady-state regimes.

In this work, we use the level set method, firstly introduced by Osher and Sethian [25], to capture the inter-
face separating the adjacent phases as the zero level set of a continuous function. Extensive descriptions of this
method and its applications have been presented in [29,24]. Sussman et al. [30] use the fluid velocity to advect
the interface in order to simulate two-phase flows. In other applications, however, the front velocity has to be
extended onto the computational domain in order to update the front position. Different numerical proce-
dures have been developed in the later years. Among others, Chen et al. [7] advect the Cartesian components
of the front velocity in the proper upwind direction, Kim et al. [17] use a constant extrapolation in the normal
direction and Adalsteinsson and Sethian [2] employ a fast marching method for the same purpose. Sussman
et al. [30] introduce an additional hyperbolic equation to re-initialize the function capturing the interface as a
distance function. Peng et al. [26] propose an improvement to Sussman’s equation which ensures that mesh
points do not change phase due to re-initialization. Other possibilities are the fast marching [29] and the fast
sweeping [43] methods.

This paper is organized as follows. First, we introduce the three-dimensional model for particle dissolution
in multi-component alloys. Subsequently, we present our numerical method, based on the level set method, in
detail. Special attention will be given to the solution of the non-linearly coupled diffusion problems and to the
extension of the front velocity. Finally, the performance of the method will be evaluated with a number of test
problems, and the conclusions will be addressed.
2. The physical problem

After manufacturing, an alloy is cast into a mould. After subsequent solidification, the state of the alloy is
referred to as the as-cast state. The as-cast microstructure is simplified into a representative cell X containing a
diffusive phase Xdp and a particle Xpart. The phases Xdp and Xpart are disjoint, and the interface separating them
is denoted by C. The multi-component alloy consists of aluminum and p secondary chemical species. Hence,
the diffusive phase is also commonly referred to as the aluminum-rich phase since aluminum is the solvent in
which the particle dissolves.

The dissolution is governed by the diffusional transport of atoms from the particle into the diffusive phase,
given by Fick’s Second Law
oci

ot
ðx; tÞ ¼

Xp

j¼1

r � ðDijrcjðx; tÞÞ; x 2 XdpðtÞ; t > 0; i 2 f1; . . . ; pg; ð1Þ
where ci denotes the concentration of the ith alloying element, i 2 f1; . . . ; pg. The coefficients Dii are the dif-
fusion coefficients, whereas Dij for i 6¼ j denote the cross-diffusion coefficients, which are a measure of the
interaction of diffusion within consecutive species. Thus, if Dij < 0 then the jth alloying element deteriorates
(i.e. delays) the diffusion of the ith species, whereas Dij > 0 implies that the jth alloying elements facilitates (i.e.
accelerates) the diffusion of the ith species. In the present work, the cross-diffusion coefficients are neglected.
Hence, Dij ¼ 0 for i 6¼ j, and then the classical diffusion equations are recovered for each chemical species.
Without loss of generality, we denote Di ¼ Dii for i ¼ 1; . . . ; p, and we postulate that the initial concentration
ciðx; 0Þ in the diffusive phase is given for all the species.

The particle is assumed to remain stoichiometric during the process. Hence, the particle concentrations stay
constant
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ciðx; tÞ ¼ cpart
i ; x 2 XpartðtÞ; t P 0; i 2 f1; . . . ; pg: ð2Þ
Furthermore, under the assumption of local thermodynamic equilibrium, the concentrations csol
i on the mov-

ing interface C satisfy the hyperbolic relation [37]
Yp

i¼1

ðcsol
i ðx; tÞÞ

~ni ¼KðT Þ; x 2 CðtÞ; t > 0; ð3Þ
which is derived from the Gibbs free energy of the stoichiometric particle, where ~ni denotes the stoichiometric
number of the ith chemical species and KðT Þ denotes the solubility product which depends on the temperature
T through an Arrhenius relation. Furthermore, no flux of the alloying elements is allowed through the bound-
ary not being C
oci

on
ðx; tÞ ¼ 0; x 2 oXdpðtÞ n CðtÞ; t > 0; i 2 f1; . . . ; pg: ð4Þ
Mass conservation for all the chemical species implies that the normal component vn of the interface velocity is
given by
ðcpart
i � csol

i ðx; tÞÞvnðx; tÞ ¼ Di
oci

on
ðx; tÞ; x 2 CðtÞ; t > 0; i 2 f1; . . . ; pg; ð5Þ
where n is the unit normal vector on the interface pointing outward with respect to XpartðtÞ. Note that Eqs. (5)
implicitly impose that
Di

cpart
i � csol

i ðx; tÞ
oci

on
ðx; tÞ ¼ Dj

cpart
j � csol

j ðx; tÞ
ocj

on
ðx; tÞ; x 2 CðtÞ; t > 0; i 6¼ j: ð6Þ
The problem as posed by (1)–(6) is commonly referred to as a vector valued Stefan problem, where the con-
centrations in the diffusive phase ci, the interface position C and the interface concentrations csol

i are to be
determined. We remark that the implementation of cross-diffusion coefficients is straightforward if the diffu-
sion matrix is diagonalizable. The only change in our present code would be the adaptation of Eq. (3), where
the eigenvectors of the diffusion matrix would have to be incorporated [34].
2.1. A note on the equilibrium conditions at the interface

According with the definition given in [12], our local equilibrium assumption is equivalent to the so-called
orthoequilibrium condition at the interface. The same conclusion can be drawn from the discussion in [14],
spite of the controversy that this term raises within different authors.

A simplification to our model can be obtained by imposing the so-called paraequilibrium condition [12] at
the interface separating the particle and the surrounding diffusive phase. Under this assumption, only the dif-
fusion of the (faster) interstitial alloying elements is considered and the diffusion of the (slower) substitutional
alloying elements is disregarded. Hence, the ternary system is treated as a binary system in which only the fas-
ter alloying element is considered. The concentration profile of the substitutional alloying element is assumed
not to change during the dissolution process. In a multi-component alloy the number of alloying elements is
decreased, hence the complexity of the problem is reduced. Since the slow elements are assumed to diffuse
‘‘infinitely’’ slowly, that is, their diffusion coefficients are set equal to zero, a direct consequence of the assump-
tion of paraequilibrium is that the dissolution rate is predicted to be lower than it actually should be if local
equilibrium for all alloying elements (i.e. orthoequilibrium) would be treated in the model.

Consider a ternary alloy for the sake of the illustration. Suppose that the interstitial species has a diffusion
coefficient D1 and the substitutional alloying element diffuses with rate D2. Then, under the assumption of
paraequilibrium, the concentration profile c2 does not change in time during the entire dissolution process.
This implies for the dissolution case that the interface concentration of element 2 is given by csol

2 ¼ cpart
2 at

all stages of the dissolution process. Since the interface concentrations satisfy the thermodynamic relationship
(3) sketched in Fig. 1(a), csol

1 is defined and stays constant during the entire dissolution process. The dissolution
times computed under the assumptions of paraequilibrium and local equilibrium are plotted in Fig. 1(b). We



Fig. 1. Differences between the models based on the local equilibrium and paraequilibrium conditions at the interface: (a) interfacial
concentrations; (b) dissolution times.
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remark that if D2 ¼ D1, the assumption of paraequilibrium only makes sense as a limit case to show the con-
sequences for small ratios of the diffusion coefficients. The differences between the two models are large when
the diffusion coefficients are alike, which shows the advantages of our model. As expected, the results from
both models converge as D1=D2 tends to infinity. This is reasonable since the assumption of paraequilibrium
is common in the case of high ratios of the diffusion coefficients. We finally remark that the curves in Fig. 1(b)
have been computed for a planar particle in an unbounded domain of computation for which we used its self-
similar exact solution [33].

3. The computational method

The position of the moving interface C separating the particle of the diffusive phase is determined using a
level set method [25]. Here, the interface C is identified by the zero level set of a signed distance function / and
its motion follows from a transport equation for /. Furthermore, p diffusion equations have to be solved
simultaneously in a domain, the diffusive phase, which is determined by the interface C. In addition, due to
the interface conditions (3) and (6), the diffusion problems are non-linearly coupled. In our approach, we first
approximate the interface position and subsequently we solve the coupled diffusion problems with an iterative
method on the interface concentrations.

The numerical solution of the governing equations will be handled as follows. The hyperbolic equations
inherited from the level set formulation are discretized with finite difference schemes over a Cartesian mesh,
whereas the diffusion problems are solved with standard Galerkin finite element methods using linear ele-
ments. This combination allows us to work out the governing equations in a simple fashion, avoiding the sta-
bilization techniques needed to solve hyperbolic equations with finite elements, and the toilsome
discretizations of the interface conditions of the finite difference approximations.

3.1. A level set method for the moving interface

A scalar continuous function / is introduced into the governing equations in order to implicitly capture the
moving interface C as its zero level set:
/ðx; tÞ ¼ 0() x 2 CðtÞ; t P 0:
This scalar indicator function / is commonly referred to as the level set function. The motion of the interface
is related to the level set function by
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o/
ot
þ vnkr/k ¼ 0;
where vn denotes the normal component of the interface velocity given by the Stefan condition Eq. (5). The
above equation is only valid at the interface because the velocity vn is only defined at the front position itself.
However, if the front velocity is continuously extended over X leading to the artificial vector field v, then the
above equation can be generalized to an hyperbolic equation for the level set function on the whole compu-
tational domain
o/
ot
ðx; tÞ þ vðx; tÞ � r/ðx; tÞ ¼ 0; x 2 X; t > 0: ð7Þ
The technique that we use to compute the velocity field v is explained in detail in Section 3.3. The numerical
approximation of Eq. (7) is done with finite differences on the Cartesian grid. The time integration is carried
out with the Euler forward method, whereas the space derivatives are discretized with a first order accurate
upwind scheme. Hence, this scheme leads to a CFL stability condition on the time step:
Dt max
jv1j
Dx1

þ jv2j
Dx2

þ jv3j
Dx3

� �
< 1: ð8Þ
In this framework, geometrical quantities on the interface are easily obtained from the level set function. Thus,
the unit normal vector is given by
n ¼ r/
kr/k ; ð9Þ
which points into the region of / > 0, and the mean curvature of the interface is defined by j ¼ r � n.

3.1.1. Re-initialization of the level set function

The level set function is initialized as a signed distance function:
/ðx; 0Þ ¼
þdistðx;Cð0ÞÞ if x 2 Xdpð0Þ;
0 if x 2 Cð0Þ;
�distðx;Cð0ÞÞ if x 2 Xpartð0Þ:

8><>:

However, after advecting the interface using Eq. (7), the level set function is in general not a distance function.
This may lead to flat/steep gradients of / in the neighbourhood of the interface, resulting into inaccurate
approximations of the front velocity. In order to prevent these effects, we re-initialize the level set function
to a distance function. This is achieved by solving in pseudo-time s the hyperbolic equation [26]
ou
os
¼ eSðuÞð1� krukÞ; ð10Þ
with initial condition uðx; 0Þ ¼ /ðx; tÞ, where eS denotes the smooth sign function
eSðuÞ ¼ uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ kruk2D�x2

q ; ð11Þ
D�x ¼ maxðDx1;Dx2;Dx3Þ and u the reinitialized level set function. Note that the zero level set of u is the same
of /, and in the steady-state kruk ¼ 1, which is a characteristic of distance functions. Hence, after Eq. (10) is
solved, / is replaced by u.

In the numerical solution of Eq. (10) we use a third order accurate TVD Runge–Kutta scheme [26] for the
time integration and a fifth order WENO scheme [15] for the space derivatives. The term GðuÞ ¼ 1� kruk is
approximated with
GðuijkÞ ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxða2

þ; b
2
�Þ þmaxðc2

þ; d
2
�Þ þmaxðe2

þ; f
2
�Þ

q
; if uijk > 0;

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxða2

�; b
2
þÞ þmaxðc2

�; d
2
þÞ þmaxðe2

�; f 2
þÞ

q
; if uijk < 0;

0; otherwise;

8>>><>>>: ð12Þ
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where a ¼ D�x1
uijk, b ¼ Dþx1

uijk, c ¼ D�x2
uijk, d ¼ Dþx2

uijk, e ¼ D�x3
uijk and f ¼ Dþx3

uijk are used to denote the left/
right sided derivatives of u with respect to x1, x2 and x3. Further, a� ¼ minða; 0Þ and aþ ¼ maxða; 0Þ, and the
same definitions apply for b�, c�, d�, e� and f�.

In order to improve the performance of our method, we reinitialize the level set function only whenever it
deviates more than a prescribed tolerance from a distance function. We measure this deviation with the infinity
norm of eSð/ÞGð/Þ along a band around of the interface. We use the same criterion to terminate the reinitial-
ization iteration. The sign function eS is introduced in the termination criteria to smear out large errors occur-
ring in singularity points (such as corners or cusps), since there Gð/Þ does not converge to zero. In our
applications, we use a band width of 5D�x and we allow a maximum deviation of 0.05. Hence, the number
of iterations required to reinitialize the level set function varies during the dissolution process. If the movement
of the interface is fast or leads to the breaking up of the interface, more iterations are required. However, if the
movement of the interface is smooth and slow, the level set function is only reinitialized after several time steps
of the main dissolution process.

3.2. The coupled diffusion problems

The hyperbolic relation (3) on the interface concentrations and the Stefan conditions (5) on the interface
velocity are reformulated as the zero of the function f : Rp

þ ! Rp given by
f1ðcsolÞ ¼
Qp
i¼1

ðcsol
i Þ

~ni �KðT Þ;

fiðcsolÞ ¼ Di

cpart
i �csol

i

oci
on
� Di�1

cpart
i�1
�csol

i�1

oci�1

on
; i ¼ 2; . . . ; p;

8><>: ð13Þ
where the vectorial notation has been embraced for csol. Note that f is defined on the interface, i.e.
csol � csolðx; tÞ along the interface points x 2 CðtÞ. Then, provided that the interface location CðtÞ is known,
the following problem (P) has to be solved in order to find the alloying elements concentration on the diffusive
phase ci and at the moving interface csol

i at a certain time t > 0.
oci
ot ðx; tÞ ¼ DiDciðx; tÞ; x 2 XdpðtÞ; i ¼ 1; . . . ; p;
oci
on
ðx; tÞ ¼ 0; x 2 oXdpðtÞ n CðtÞ; i ¼ 1; . . . ; p;

ciðx; tÞ ¼ csol
i ðx; tÞ; x 2 CðtÞ; i ¼ 1; . . . ; p;

fðcsolðx; tÞÞ ¼ 0; x 2 CðtÞ:

��������� ðPÞ
In our method, we will use the Euler backward method for the time integration and a standard Galerkin finite
element method, with linear elements, for the space derivatives of the diffusion equations. Furthermore, the
non-linear coupling given by f is solved with an iterative method on the interface concentrations. Hence, a
proper numerical solution of the coupled diffusion problems (P) demands that several issues are treated metic-
ulously. First, the background finite element mesh needs to be adapted to the interface position in order to
obtain a triangulation which is conformed to the diffusive phase and to implement the interface conditions
easily. Second, the time discretization of the diffusion equations must be locally adapted for the mesh points
that have joined the diffusive phase within the current time step because of the jump discontinuity of the con-
centrations across the interface. And third, a suitable iterative method shall be defined in order to obtain a
robust and efficient method of which the extension to higher dimensional problems is affordable.
3.2.1. A simple reconstruction of the particle-diffusive phase interface

We use a cut-cell method to adapt the basic triangulation to the interface position prior to solve the diffu-
sion problem (P). Only linear elements (i.e. triangles in 2D and tetrahedra in 3D) are used in our finite ele-
ments approximation. The sign of the level set function on the vertices of an element indicates whether this
element is intersected by the interface. The intersection points (i.e. interface points) are computed by linear
interpolation of the level set function along the edges of the elements. Hence, these intersections are uniquely
defined. Thus, a triangle might have either zero or two intersections, whereas a tetrahedron might have zero,
three or four intersections. Each intersected element is subdivided into sub-elements based on the subdivision
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of its edges. The division of edges is determined by the intersection points. The division of triangles follows
from the division of edges, as sketched in Fig. 2.

The division of faces of tetrahedra is done likewise. However, in this case the subdivision of faces should be
done according to a unique rule so that neighbouring elements match. In our method, we base the subdivision
of faces in the node numbering, although other criteria are also possible. Once the faces are divided, the divi-
sion of the element is straightforward. Hence, tetrahedra with three intersection points will be subdivided into
four new tetrahedra, see Fig. 3 and tetrahedra with four intersection points will be subdivided into six new
tetrahedra, see Fig. 4.

In order to avoid ill-shaped elements, only intersections not too close to the vertices are taken into account.
If the intersection is near a vertex, the intersection point is moved to that vertex. For instance, if the inter-
section point I1 is excessively close to V 3 in Fig. 2, then it is moved to V 3 and the triangle is subdivided into
the triangles V 3I2V 2 and I2V 1V 2. A similar procedure is applied for tetrahedra. A tolerance tolcc relative to
the mesh size is prescribed by the user to determine whether interface points are too close to the vertices of the
elements. The additional error made in this way is of order OðhÞ, where h denotes the diameter of the
triangulation.

It is important to remark that the cut-cell method is only applied to solve the diffusion equation. The inter-
face points obtained with the cut-cell method are used to adapt the triangulation to the interface position, and
the level set function is never altered by this procedure. The advantage of the subdivision is that the interface is
reconstructed in a relatively simple way, without destroying the original basic mesh. Prescribing boundary
conditions on this approximated interface is a straightforward task. Once problem (P) is solved, the interface
points and interface concentrations are stored in separate vectors, since they will be used to compute the front
velocity (5), and the basic mesh is reestablished.
Fig. 2. Subdivision of a two-dimensional element by the cut-cell method.

Fig. 3. Subdivision of a three-dimensional element with three intersection points by the cut-cell method. (a) Subdivision of the faces.
(b) Subdivision of the element.



Fig. 4. Subdivision of a three-dimensional element with four intersection points by the cut-cell method. (a) Subdivision of the faces.
(b) Subdivision of the element.
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3.2.2. Local adaptations of the time integration

Because of the diffusion equations are solved with an implicit Euler method, the time integration at the
mesh points that have changed phase within the computational time step must be locally corrected. For the
problems considered in this work, this is an important implementational issue due to the jump of the concen-
trations from cpart

i to csol
i across the interface. The most elegant solution would be to perform the time integra-

tion from the time t�ðxÞ at which the interface passes through the node x and the new time step tnþ1. The time
t�ðxÞ can be easily computed from a linear interpolation of the level set function. Then, one could use
oci

ot
ðx; tnþ1Þ � ciðx; tnþ1Þ � csol

i ðx; t�ðxÞÞ
tnþ1 � t�ðxÞ :
This approach can be greatly exploited if csol
i ðx; t�ðxÞÞ is known in advance. This holds for instance for long-

distance diffusion models of particle dissolution in binary alloys [35], where the interface concentration
csolðx; tÞ is a given constant. However, for the problems under study, the value of csol

i ðx; t�ðxÞÞ is unknown,
and the only way to compute it is to solve (P) at time t�ðxÞ. Since a similar adaptation must be accomplished
for all the nodes x that are crossed by the interface, this technique is unprofitable from a practical point of
view. Instead, we control the time-stepping with the tolerance tolcc used in the cut-cell method. Since the dif-
fusion equations are solved with the Euler backward method, the only restriction on the time-stepping is given
by the CFL condition (8) for the advection of the interface, which yields
Dt 6 DtCFL :¼ CFL

max jv1j
Dx1
þ jv2j

Dx2
þ jv3j

Dx3

� � ð14Þ
with CFL < 1. In addition, we impose CFL < tolcc. This choice ensures that, before crossing a mesh point, the
interface will first lay unavoidably on this mesh point and, consequently, a continuous concentration profile
will exist. Normally, in our numerical simulations, we use tolcc ¼ 0:3 and CFL ¼ 0:25.

3.2.3. The determination of the interface concentrations
The interface concentrations csol

i are found with an iterative method. The computational cost of such an
iteration depends linearly on the number of interface points, which grows linearly in two-dimensional prob-
lems and quadratically in three-dimensional problems with the level of refinement of the computational mesh.
Hence, the workload per iteration determines the choice of the proper iterative method.

A Newton iteration demands the computation of the Jacobian of f, which in this case should be approx-
imated numerically. Using central differences
ofi

ocsol
¼

fiðcsol
1 ; . . . ; csol

j þ e; . . . ; csol
p Þ � fiðcsol

1 ; . . . ; csol
j � e; . . . ; csol

p Þ
2e

;

j
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with a sufficiently small increment e, demands 2p2 additional evaluations of f. Hence, 2p2 problems (P) (i.e. 2p3

diffusion equations) with modified Dirichlet boundary conditions should be solved in order to approximate
the Jacobian in a single interface point and iteration. Broyden’s method reduces the computational cost
of the Newton method considerably using a sequential approximation of the Jacobian matrix which avoids
the additional evaluations of f. However, a p � p system of equations is still to be solved per interface point
and iteration. Therefore, we prefer a fixed-point iteration in spite of its slow convergence rate due to its low
computational cost (one evaluation of f per interface point and iteration).

Let us arrange the chemical species in increasing order of the diffusion coefficients, i.e. D1 6 � � � 6 Dp. Pro-
vided csol

0 , we approximate the zero of f with a fixed-point iteration
csol
k ¼ gðcsol

k�1Þ; ð15Þ
where the function g is given by
g1ðcsolÞ ¼ KðT Þ
ðcsol

1
Þ~n1�1
Qp

j¼2
ðcsol

j Þ
~nj
;

giðcsolÞ ¼ csol
i þ di

Di

cpart
i �csol

i

oci
on
� Di�1

cpart
i�1
�csol

i�1

oci�1

on

� �
; i ¼ 2; . . . ; p:

8>><>>: ð16Þ
The iteration (15) is terminated when the infinity norm of f along the interface is smaller than a prescribed
tolerance tolf. The relaxation parameters di are introduced to make g a contraction and hence to achieve con-
vergence. Furthermore, in order to improve the convergence rate of (15), the parameters di should be tuned
according to physical parameters of the chemical species i and i � 1 involved in the formulation (16). In fact,
the choice of g should be made according to the physical parameters as well. Note that gi (for i ¼ 2; . . . ; p) has
two poles at cpart

i and cpart
i�1 , and there are situations in which csol

i ! cpart
i . For instance, if cpart

i 	 c0
i ¼ 0 for

i ¼ 1; . . . ; p and D1 
 Dp, then csol
1 ! cpart

1 and
csol
p !

KðT ÞQp�1
i¼1 ðcsol

i Þ
~ni

 ! 1
~np

� 0
in order to satisfy the balance of atoms through the interface (6). In those cases, di should be chosen suffi-
ciently small, which delays convergence considerably. However, the performance of (15) can be substantially
improved by defining
giðcsolÞ ¼ csol
i þ di ðcpart

i�1 � csol
i�1ÞDi

oci

on
� ðcpart

i � csol
i ÞDi�1

oci�1

on

� �
: ð17Þ
Reversely, in cases where csol
i deviates sufficiently from cpart

i , the terms cpart
½i;i�1� � csol

½i;i�1� in Eq. (17) act as ampli-
fication factors, hence di must be reduced and consequently the convergence rate is decreased. In those cases,
Eq. (16) defines a more efficient iteration.

The initial guess of the interface concentrations. Providing initial approximations csol
i;0 to the interface concen-

trations at each time step is a difficult task. At time t ¼ 0, we make use of the self-similar solutions [33] defined
in unbounded domains for planar interfaces. This approximation does not incorporate the influence of the
interface topology, but provides a sufficiently good initial guess. In order to define csol

i;0 at a general time step
tnþ1 we use an average of the interface concentrations at the previous time step, that is
csol
i;0 ðx; tnþ1Þ :¼ 1

nf

Xnf

k¼1

csol
i ðxfk ; t

nÞ; x 2 Cðtnþ1Þ; i ¼ 1; . . . ; p; ð18Þ
where nf denotes the number of interface points xfk at time tn. Note that with this approximation, the spatial
variations of csol

i ð�; tnÞ are annihilated. Another possibility, which incorporates the effects of the interface topol-
ogy, is to define csol

i;0 ð�; tnþ1Þ from the concentration profiles ci at the previous time step.
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3.3. Extension of the front velocity away of the interface

The front velocity vn is only defined at the interface location, and an artificial continuous extension of it
onto X is required to update the level set function. Eqs. (5) impose that all the chemical elements present
in the alloy prescribe the same motion to the interface. Hence, vn will be computed from c1 and csol

1 without
loss of generality. Furthermore, it is important to stress that the interface concentrations, are only known,
after solving (P), at the interface points computed with the cut-cell method.

Hence, the computational strategy that fits our purposes best is to extend the Cartesian components of the
front velocity
Fig. 5.
neighb
Inform
directi
vðx; tÞ ¼ D1

cpart
1 � csol

1 ðx; tÞ
rc1ðx; tÞ
independently in the proper upwind direction. We follow the method presented by Chen et al. [7], where the
information is advected from the interface onto X by solving in pseudo-time s the following equations
ovq

os
þ Sð//xq

Þ ovq

oxq
¼ 0; for q ¼ 1; 2; 3; ð19Þ
where v ¼ ðv1; v2; v3Þt, x ¼ ðx1; x2; x3Þt and S denotes the sharp sign function. The extension procedure has been
sketched in Fig. 5 for a two-dimensional example. First, we compute the velocity at the interface points using
linear approximations of oc1

oxq
. Subsequently, the front velocity is attached to the east/west (resp. north/south)

neighbours of the interface points. And finally, the information is advected from these points in the proper
direction with Eq. (19). In order to reduce the computational cost invested in this procedure, a fixed number
of pseudo-time iterations of (19), namely 10, are carried out to extend the front velocity into a sufficiently wide
band around the interface.

3.4. The complete algorithm

Next, we give the complete algorithm of our method, where the coupling between the above discussed issues
is presented.

1. Set t ¼ 0. Initialize the level set function as a signed distance function according to the initial particle geom-
etry, being positive inside the diffusive phase.
Extension of the front velocity in the Cartesian directions: neighbours inside the diffusive phase are marked with black rectangles,
ours inside the particle are marked with grey rectangles, and interface points computed with the cut-cell method are marked with ¤.
ation travels off the interface. (a) Extension of the front velocity in the direction of x1. (b) Extension of the front velocity in the

on of x2.
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2. Initialize the interface concentrations csol
i and concentrations ci inside the diffusive phase. For complex par-

ticle geometries, for which self-similar solutions [33] can not be defined, use the cut-cell method to adapt the
background triangulation to the interface position and solve (P) with a time-step Dt0 / D�x2.

3. Compute the velocity field v according to the procedure presented in Section 3.3, and determine the time
step Dt in agreement with (14).

4. Update the level set function by solving Eq. (7).
5. If necessary, solve Eq. (10) to reinitialize the level set function to a distance function.
6. Use the cut-cell method to adapt the background triangulation to the interface position at the new time

step.
7. Update the interface concentrations csol

i and concentrations ci inside the diffusive phase by solving (P). Per-
form following iteration:
7.1 Define the initial approximation csol

i;0 of the interface concentrations with (18). Set k ¼ 0.
7.2 Solve the diffusion equations (1) with Dirichlet boundary conditions csol

i ¼ csol
i;k on the interface and Neu-

mann boundary conditions (4) on the boundary of the diffusive phase not being the interface.
7.3 Compute f from the concentration profiles ci;k obtained in 7.2.
7.4 If the infinity norm of f along the interface points is larger than tolf, then update the interface concen-

trations with (15), set k ¼ k þ 1 and go back to 7.2.Otherwise, set csol
i ðx; t þ DtÞ ¼ csol

i;k ðx; t þ DtÞ,
ciðx; t þ DtÞ ¼ ci;kðx; t þ DtÞ and go to 8.

8. Update the time step: t ¼ t þ Dt.
9. If the termination time tend is not reached, go back to 3.

4. Numerical results

This section contains some numerical experiments. First, we consider an academic test problem to study the
accuracy of our method. Subsequently, the model is applied to an AlMgSi-alloy to investigate the influence of
the particle morphology in the dissolution kinetics. Finally, a topological change is simulated by means of the
dissolution of a three-dimensional dumbbell-like particle.
4.1. Accuracy of the numerical method

The influence of the numerical method on the accuracy of the results is investigated here by means of an
academic test problem. To this end, consider the dissolution of a particle in an alloy with one, two, three
and four diffusive chemical species, respectively. The physical parameters associated with these alloys are listed
in Table 1. Note that in the binary alloy (i.e. only one diffusive element), the interfacial concentration is given,
whereas in the multi-component alloys, the interfacial concentrations are computed as part of the solution.
The performance of our method will be examined by comparison of the numerical results with self-similar
solutions and steady-state solutions.
4.1.1. Comparison with self-similar solutions

Self-similar solutions of vector Stefan problems are well known for simple particle geometries. Bourne et al.
[4] describe the shape-preserving growth in infinite media of planar, cylindrical, spherical and ellipsoidal
particles in ternary alloys. More recently, Vermolen [36] extended these solutions to particle growth in
Table 1
Physical parameters of the alloy with one, two, three and four chemical species, respectively

One species cpart ¼ 5 c0 ¼ 0 csol ¼ 1 D ¼ 1
Two species cpart

i ¼ 5 c0
i ¼ 0 ~ni ¼ 1, KðT Þ ¼ 1 D ¼ 1, D2 ¼ 5

Three species cpart
i ¼ 5 c0

i ¼ 0 ~ni ¼ 1, KðT Þ ¼ 1 D ¼ 1, D2 ¼ 5, D3 ¼ 0:5
Four species cpart

i ¼ 5 c0
i ¼ 0 ~ni ¼ 1, KðT Þ ¼ 1 D ¼ 1, D2 ¼ 5, D3 ¼ 0:5, D4 ¼ 20
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multi-component alloys with interface reactions. Analogous solutions for particle dissolution are not always
available, since in many cases it is assumed that precipitates are absent at the initial time. However, in this
work, we will use the self-similar solutions for dissolution of planar and spherical particles given by Vermolen
et al. [33] and Whelan [42], respectively. For planar particles, the interface position s is given by
sðtÞ ¼ s0 þ a
ffiffi
t
p
; ð20Þ
where a is related to the interfacial concentrations csol
i by
a
2
¼ c0

i � csol
i

cpart
i � csol

i

ffiffiffiffiffi
Di

p

r
exp � a2

4Di

� �
erfc a

2
ffiffiffiffi
Di
p

� � ; i ¼ 1; . . . ; p: ð21Þ
For spherical particles, the front velocity ds
dt is given by
ds
dt
ðtÞ ¼ � csol

i � c0
i

cpart
i � csol

i

Di

sðtÞ þ
ffiffiffiffiffi
Di

pt

r !
; i ¼ 1; . . . ; p: ð22Þ
Remember that in both cases, the interfacial concentrations csol
i satisfy the solubility product Eq. (3). More-

over, it is worth noting the time dependence of the interfacial concentrations in the case of spherical symmetry,
which are constant for planar symmetry. This gives evidence of the importance of particle morphology in the
dissolution kinetics.

The evolution of the interface is presented in Fig. 6 together with the self-similar solutions for both particle
geometries. In both cases, the numerical solutions agree well with the analytic solutions at the begining of the
dissolution process. However, as time evolves, the numerical solutions separate from the analytic ones due to
the boundedness of our domain domain of computation (X ¼ ½0; 1�), and converge to the equilibrum states as
will be shown in the next section. Similar results are obtained for the systems with three and four diffusive
species.
4.1.2. Comparison with steady-state solutions

In this section, we solve the dissolution of a planar interface in a two-dimensional framework in order to
establish the influence of the cut-cell method in the accuracy of the numerical results when vector Stefan prob-
lems are to be solved in higher dimensions. To this effect, consider a computational domain X ¼ ½0; 1�2, and
assume that the interface is initially located at Cð0Þ ¼ fx 2 Xjx1 ¼ s0g with s0 ¼ 0:615. Furthermore, assume
that the particle is located at the left side of the interface and the diffusive phase at its right. The parameters of
the problem, given in Table 1, have been chosen in such a way that the position of the interface s1 at the
steady-state solution is the same for all cases under study. For general geometries, the equilibrium interface
concentrations csol

i;1 and equilibrium particle area (i.e. volume) V 1 are the solution of system (E) based on a
conservation of mass argument and the hyperbolic Eq. (3)
cpart
i V 0 þ c0

i ðV X � V 0Þ ¼ cpart
i V 1 þ csol

i;1ðV X � V 1Þ; i ¼ 1; . . . ; p;Qp
i¼1

ðcsol
i;1Þ

~ni ¼KðT Þ;

������� ðEÞ
where V 0 and V X denote the area (i.e. volume) of the particle at t ¼ 0 and of the computational domain X,
respectively. The equilibrium position of the interface s1 is derived from the area of the particle at the equi-
librium. In this case, s1 ¼ V 1 ¼ 0:51875.

Next, we present the relative error in the interface position js1�shðtÞj
s1

at t ¼ 0:75 for the various alloys. First,
we present in Table 2 the impact of the cut-cell method in the accuracy of the results for the dissolution in the
binary alloy. In this case, the interface concentration is given and the iteration (15) is not necessary to solve
(P), which allows us to use a small value of tolcc. This choice might permit narrow elements on the interface,
which for dissolution problems in multi-component alloys result in poor approximations of the fluxes oci

on
and

the divergence of (15) in the worse cases. Thus, tolcc ¼ 0:01 and tolcc ¼ 0:3 are used as a default tolerances
for the dissolution in binary and multi-component alloys, respectively. Surprisingly, a larger difference in



Fig. 6. Early stages of dissolution. Numerical solution (dashed curves) vs the self-similar solution (solid curves) for: (a) planar symmetry;
and (b) spherical symmetry.

Table 2
Relative error in the interface position at t ¼ 0:75 for the problem with only one diffusive species and the effect of tolcc on the experimental
order of convergence

Mesh size Error EOC Error EOC

6.25 · 10�2 3.46 · 10�2 4.04 · 10�2

3.13 · 10�2 1.80 · 10�2 0.95 1.81 · 10�2 1.16
1.56 · 10�2 9.22 · 10�3 0.96 9.09 · 10�3 0.99
7.81 · 10�3 4.69 · 10�3 0.98 5.39 · 10�3 0.75

tolcc ¼ 0:01 tolcc ¼ 0:3

a �0.2444
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the accuracy is observed at the finest mesh. The error due to the shift of the interface points to mesh points is
proportional to the mesh size Dxk, so it does not destroy the overall accuracy of the numerical method. How-
ever, as the mesh is refined, this shift is carried out in more occasions for the same displacement of the inter-
face. Hence, the accumulative effect of these errors is what probably causes the differences in the accuracy.
Unfortunately, these slight differences in the accuracy have a stronger effect in the experimental order of con-
vergence (EOC)
EOCDx :¼
ln errorDx

errorDx=2

� �
lnð2Þ :
The relative errors in the interface position at t ¼ 0:75 for the multi-component alloys are presented in Table 3.
The coefficient a presented in the last row of Tables 2 and 3 gives a measure of the dissolution rate derived
from the self-similar solutions (see Eq. (20)). The numerical results show that the accuracy depends on the dis-
solution rate. It appears that the accuracy of the method is reduced by increasing the speed of the dissolution.

4.2. The effect of the particle morphology in the dissolution kinetics

In this section, we study the influence of the morphology of the particle in the dissolution kinetics. We con-
sider a family of Mg2Si particles whose shapes vary from a circle (i.e. cylindrical symmetry) towards a very
elongated ellipse. The physical parameters of the problems are shown in Table 4. The diffusion coefficients
DMg and DSi and the solubility product KðT Þ are given by the following Arrhenius relationships



Table 3
Relative error in the interface position at t ¼ 0:75 for the problems with two, three and four diffusive species

Mesh size Two species Three species Four species

6.25 · 10�2 4.41 · 10�2 3.79 · 10�2 5.15 · 10�2

3.13 · 10�2 2.84 · 10�2 2.05 · 10�2 3.62 · 10�2

1.56 · 10�2 1.71 · 10�2 1.36 · 10�2 2.57 · 10�2

7.81 · 10�3 1.13 · 10�2 8.39 · 10�3 2.02 · 10�2

a �0.3682 �0.2876 �0.4081

Table 4
Physical parameters for the dissolution of the Mg2Si particles

cpart
Mg ¼ 65 wt% D0

Mg ¼ 4:9� 107 lm2=s nMg ¼ 2=3

cpart
Si ¼ 35 wt% D0

Si ¼ 2:02� 108 lm2=s nSi ¼ 1=3

c0
Mg ¼ 0 wt% Qd

Mg ¼ 1:24� 105 J=mol k0 ¼ 89

c0
Si ¼ 0:038 wt% Qd

Si ¼ 1:36� 105 J=mol Qs ¼ 3:197� 104 J=mol

Fig. 7.
the ini
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D½Mg;Si� ¼ D0
½Mg;Si� exp �

Qd
½Mg;Si�

RT

 !
; KðT Þ ¼ k0 exp � Qs

RT

� �
;

where R ¼ 8:3144 J=K mol denotes the universal gas constant and T ¼ 560 �C stands for the temperature at
which the phase transformation takes place.

In order to compare the dissolution kinetics of the different particles, we fix the volume fraction of the ini-
tial particle. To achieve this, all the simulations are carried out over a squared cell of area 225 lm2 and the
area of the initial particle is set equal to p lm2. This corresponds with a circular particle of radius 1 lm (curve
I in the figures) or an ellipse which its semimajor and semiminor axes a and b satisfy ab ¼ 1 lm2. In our
numerical experiments, we have used b ¼ 0:8; 0:6; 0:4; 0:2 lm (curves II, III, IV and V, respectively, in the
figures).

Next, the normalized area AðtÞ=Að0Þ of the Mg2Si particles is presented in Fig. 7(a) as a function of the
normalized dissolution time t=tdiss, where tdiss denotes the dissolution time of the circular particle. From
our numerical calculations we have that tdiss ¼ 186:04 s. As can be observed from the results, the geometry
of the particle strongly influences the dissolution kinetics. The more elongated the ellipse is, the faster disso-
lution takes place. This is due to the fact that, the more elongated the ellipse is, the larger the arc length of the
Dissolution of the Mg2Si particles: (a) normalized particle area vs normalized dissolution time; (b) dissolution time vs arc length of
tial interface.
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interface is, and consequently more atoms are able to cross the interface at the same time. In fact, the numer-
ical results indicate that the dissolution time decays exponentially with the perimeter of the initial particle, as
can be observed in Fig. 7(b). The function tdissðLÞ approximating the dissolution time as a function of the arc
length of the initial interface has been fitted to the numerical results with a least squares method.

Subsequently, we present in Fig. 8 the eccentricity
Table 5
Physica

cpart
1 ¼

cpart
2 ¼
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

a2

s

of the particle during the dissolution process. The numerical results show that the shape of the initial particle is
preserved during most of the dissolution process. The largest variations are observed in curves II, III and IV,
and occur when the normalized particle area is less than 2%, which corresponds with the area of about 6 or 7
control volumes of our reference mesh. These variations indicate that the particle tends to a more rounded
shape when it is close to be fully dissolved. However, since the mesh is not locally refined when the particle
is about to dissolve, this outcome might be due to or affected by numerical artifacts.

4.3. Dissolution of a three-dimensional particle involving a topological change

In this section, the dissolution of a three-dimensional dumbbell-like particle in a ternary alloy is simulated.
The initial geometry of the particle is given by two spheres, whose centers and radius are cl ¼ ð�0:275; 0; 0Þt,
cr ¼ ð0:21; 0; 0Þt, rl ¼ 0:15 and rr ¼ 0:2, connected by a cylindrical bar of radius rbar ¼ 0:05. The domain of
computation X ¼ ½�0:5; 0:5�3 and the physical parameters of the problem, listed in Table 5, have been chosen
to obtain the full dissolution of the particle. In spite of that this is an academic test problem, similar ratios of
the diffusion coefficients can be found in the 6xxx-Al alloys under homogenization conditions. The influence of
the particle concentrations, which may be notably different in the 6xxx series, in the performance of the
method is less relevant because their effect on the performance of the iteration procedure (15) is minor.
Fig. 8. Dissolution of the Mg2Si particles: eccentricity of the particle vs normalized dissolution time.

l parameters for the dissolution of the 3D dumbbell-shaped particle

5 c0
1 ¼ 0 D1 = 1 n1 = 1 KðT Þ ¼ 1

5 c0
2 ¼ 0 D2 = 2 n2 = 1



Fig. 9. Dissolution of a three-dimensional dumbbell-like particle in a ternary alloy: (a) t ¼ 0; (b) t ¼ 2:9� 10�3; (c) t ¼ 7:4� 10�3;
(d) t ¼ 1:05� 10�2; (e) t ¼ 2:85� 10�2; (f) t ¼ 4:82� 10�2.
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The evolution of the interface is presented in Fig. 9. During the dissolution process, the particle breaks up
into two separate particles which dissolve separately. Fig. 9(c) shows clearly the cusps in the interface just after
the particle splits, which are smoothed out rapidly as the dissolution evolves. Furthermore, due to the initial
topology of the particle, the sub-particle on the right dissolves, as expected, faster.

5. Conclusions

A novel three-dimensional sharp interface model based on the level set method is proposed for simulation
of particle dissolution in multi-component alloys. A cut-cell method is presented to adapt the reference mesh
to the interface each time step. Due to the complexity of the problem, we recommend a Picard iteration to
solve the non-linear coupling on the concentrations of the various alloying elements at the interface. The
numerical method is shown to be capable of dealing with complex geometries and topological changes. Perfect
agreement with self-similar solutions and steady-state solutions is obtained. Furthermore, it is demonstrated
experimentally that the morphology of the particle exerts a strong influence on the dissolution kinetics. Our
numerical results indicate an exponential acceleration of the dissolution process with the circumference of the
initial particle.

Of course the method is, at this early stage of development, far to be optimized. A noticeable slow down of
the convergence of the non-linear iteration is observed for problems in which the diffusion coefficients differ of
several, from 4 to 6, orders of magnitude. We believe that a significant improvement in the computational cost
can be achieved by optimizing the non-linear solver. Furthermore, even though this method does not have any
restriction on the maximum number of species that can be considered simultaneously and works satisfactorily
for a wide range of industrial alloys, it also opens the door to many new questions. Further, a close compar-
ison with experimental results currently not available is necessary to successfully comprehend the metallurgical
implications of these transformations.
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